Abstract

ABSTRACTDiclofenac (DCF), a widely used non-steroidal anti-inflammatory drug, is a commonly detected substance that readily accumulates in tissues of aquatic fish and poses a threat to wildlife and freshwater quality. Advanced Oxidation Processes have been employed as an alternative due to the inadequacy of conventional treatment methods of trace contaminants. This study utilized an innovative method of solar-activation of TiO2 using Eosin-Y dye for the degradation of DCF. Furthermore, the study incorporated a central composite design (CCD) to optimize the dye concentration and estimated the cost for the present process. Optimized parameters for light intensity (750 mW/cm2), Eosin-Y dye concentration (2 mg/L), TiO2 loading (37.5 mg/cm2) and DCF concentration (25 mg/L) were determined through a CCD. The optimized parameters convey a DCF degradation rate of 40% and 49% for 2 ppm (low range) and 4 ppm (high range) dye concentrations, respectively, for a 5-minute reaction time. Cost estimation for the materials used was for the current process was also performed. It was determined that the additional cost of using 4 ppm instead of 2 ppm to achieve only 10% more DCF degradation is not warranted and would require additional treatment to remove subsequently formed halogenated compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.