Abstract

In the recent years, solar cooling technologies for buildings have garnered increased attention. This study aimed to evaluate the performance of current solar thermal and solar photovoltaic (PV) air-conditioning technologies. Hence, the annual heating/cooling load profile and energy consumption of a reference building in the climate of Aqaba, Jordan were simulated using the TRNSYS software. The solar thermal and solar PV air-conditioning systems were designed and simulated to compensate the cooling demands. It was found that the annual cooling energy accounted for 96.3 % of the total annual energy demand (heating plus cooling) of the reference building. The solar PV and solar thermal air-conditioning systems compensated for direct cooling by 35.8 % and 30.9 %, respectively, and the corresponding compensations of cooling energy by the storage system were 7.3 % and 11.9 %, respectively. Thus, through this comparative study, we found that the storage system significantly contributed in compensating the cooling demands of the solar thermal system; however, the compensation to direct cooling was lower relative to the solar PV system

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.