Abstract

AbstractFabrication and characterization of solar cells based on multicrystalline silicon (mc‐Si) thin films are described and synthesized from low‐cost soda‐lime glass (SLG). The aluminothermic redox reaction of the silicon oxide in SLG during low‐temperature annealing at 600 – 650 °C leads to an mc‐Si thin film with large grains of lateral dimensions in the millimeter range, and moderate p‐type conductivity with an average Al acceptor concentration between 5 × 1016 and 1.2 × 1017 cm−3 in the bulk. A residual composite layer of mainly alumina and unreacted Al forms beneath the mc‐Si thin film as the second product of the crystalline silicon synthesis (CSS) process, which can be used as rear contact in a vertical solar cell design. The mc‐Si absorber (≈10 µm) is thin enough that the diffusion length given by a minority carrier lifetime of ≈1 µs exceeds the path length to the top contact several times. Homojunction and heterojunction diodes have been fabricated on the mc‐Si thin films and show great potential of CSS for the realization of high‐performance solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.