Abstract

Janus monolayers, realized by breaking the vertical structural symmetry of two-dimensional (2D) materials, pave the way for a new era of high-quality and high-performance atomically-thin vertical p-n heterojunction solar cells. Herein, employing first-principles computations, Janus group-III chalcogenide monolayers, MX, M2XY, MM'X2 and MM'XY (M, M' = Ga, In; X, Y = S, Se, Te), are deeply investigated in view of their implementation in 2D photovoltaic systems. Their stability analysis reveals that the 21 investigated monolayers are energetically, thermodynamically, mechanically, dynamically, and thermally stable, confirming their growth feasibility under ambient conditions. Furthermore, owing to their optimal band gap, high charge carrier mobilities, and strong light absorption, 2D Janus group-III monolayers are predicted as promising candidates for 2D excitonic solar cell applications. In fact, 46 type-II van der Waals (vdW) heterostructures with a lattice mismatch of less than 5% are identified by analyzing the band alignments of the investigated monolayers obtained through the HSE + SOC approach. In particular, 7 vertical vdW heterojunctions with a power conversion efficiency (PCE) higher than 20% are predicted and might be the focus of future experimental and theoretical studies. To further confirm the type II band alignment, the Ga2STe-GaInS2 vdW heterostructure, which reveals the highest PCE of 23.69%, is thoroughly investigated. Our results not only predict and evaluate stable 2D Janus group-III chalcogenide monolayers and vdW heterostructures, but also suggest that they could be used as materials for next-generation optoelectronic and photovoltaic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call