Abstract

A technique of mounting a microlens array (MLA) on a solar cell as an encapsulation layer is presented. The uniform cylinder-shaped MLA was fabricated through simple and cost-effective micromachining processes. The efficiency of the triple-junction InGaP/GaAs/Ge solar cell was considerably enhanced by replacing a bare glass cover with the developed MLA as a surface protection layer. This is attributed to efficient conveyance of the refractive light into bare photoactive regions of the solar cell to avoid the gridlines. Under the optimal mounting condition with an optimal height of optical spacer, the MLA effect was maximized resulting in a 16.8% increase in power conversion efficiency (PCE) than that of the control device. The efficiency of the MLA-packaged solar cell remained for a long time without degradation. The MLA can therefore replace a conventional glass (or film) as a means of encapsulation layer to enhance photovoltaic performances of GaAs-based solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.