Abstract

We investigated how silicon nanowires affected the photovoltaic performance of silicon solar cells with a pyramid textured surface. The diameter and height of silicon nanowires increased and reached saturation with electro-less etching time after Ag nanoparticle deposition. As a result, the amount of light absorbance increased with electro-less etching time while the effective minority-carrier recombination lifetime decreased with increasing electro-less etching time. The dependencies of light absorbance amount and effective minority-carrier recombination lifetime on electro-less etching time meant that a maximum power-conversion efficiency (PCE) was achieved at a specific electro-less etching time, ∼2min, to produce silicon nanowires ∼52μm in diameter and ∼221μm in height.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.