Abstract

We demonstrate a solar cell application based on vertical graphene nano hills (VGNH) directly grown without using a catalyst. The photovoltaic device based on VGNH grown on top of interfacial layer Al2O3 is compared with that on top of bare silicon by critically analyzing its electrical properties. The role of the interfacial layer is to minimize surface recombination and enhance its built-in potential. Our key process is simple to fabricate large-area devices, avoiding an unreliable transfer process. In addition, the thickness of VGNH is optimized and the surface texturing of silicon is performed to overcome the crucial problem of the high reflectivity of silicon. A low reflectivity of thick layers of VGNH is achieved with low series resistance despite of the vertical structure, which is beneficial for high photocurrent. A higher work function of VGNH ∼4.7 eV is measured by KPFM. The conversion efficiency of 10.97% is achieved with an active area of 0.9 cm2 by co-doping with PEDOT: PSS and inorganic acid HNO3. Moreover, the photo-responsivity of the VGNH-based device is estimated as 1.196 AW-1 under deep ultraviolet light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call