Abstract

AbstractPaper‐based microfluidics emerges as an innovative platform for constructing miniaturized electrochemical devices, which mainly benefit from the spontaneous capillary action of paper. Nevertheless, the capillary‐driven flow dynamics on paper are determined exclusively by the intrinsic properties of paper and fluidics, thus lacking the controllability that conventional pump‐based microfluidics can provide. Herein, an approach to regulating the capillary flow on paper is introduced by conjugating the outlets of microfluidic channels with a photothermal module for water evaporation. The capillary flow rate on paper can be handily regulated from 4 to 37 µL min−1 under controllable illumination conditions. As a proof‐of‐concept, prototypical paper‐based microfluidic fuel cells integrated with the photothermal module are constructed. Their peak power density can be boosted from 0.3 up to 2.1 mW cm−2 under the simulated sunlight irradiation. The influence of capillary flow rate on the fuel cell performance is further validated using multiphysics simulations. The present work not only provides a practically feasible method to boost the performance of paper‐based microfluidic fuel cells using solar energy, but also opens a new avenue for modulating the performance of paper‐based microfluidics, which has long been a challenge in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.