Abstract

A major difficulty in characterizing vacuum ultraviolet (VUV) radiation produced by harmonic generation or four-wave sum frequency mixing arises in differentiating between the desired VUV signal and the remaining fundamental pump laser beam. To overcome this problem, visible and near UV blind VUV detectors, made from natural and synthetic diamond, have been developed. Such detectors have been used to characterize coherent VUV pulses (λ=125 nm, pulse duration at full width half maximum (FWHM) τFWHM∼7 ns) generated by resonance-enhanced four-wave sum mixing in mercury vapor. They allow full characterization of the intensity profile of the VUV pulses, without any significant parasitic signal from simultaneous stray light irradiation at λ=313 nm. Detectors were fabricated exhibiting response times of less than 70 ps at FWHM, corresponding to the lowest response time obtainable with a 7 GHz bandwidth single-shot oscilloscope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.