Abstract

Heterogeneous n-III-nitride/i-p silicon carbide (SiC) photodetectors have been demonstrated that enable the tailoring of the spectral response in the solar blind region below 280 nm. The negative polarization induced charge at the aluminum gallium nitride (AlxGa1−xN)/aluminum nitride (AlN) interface in conjunction with the positive polarization charge at the AlN/SiC interface creates a large barrier to carrier transport across the interface that results in the selective collection of electrons photoexcited to the Γ and L valleys of SiC while blocking the transport of electrons generated in the M valley. In addition, the AlxGa1−xN alloys act as transparent windows that enhance the collection of carriers generated by high energy photons in the fully depleted SiC absorption regions. These two factors combine to create a peak external quantum efficiency of 76% at 242 nm, along with a strong suppression of the long-wavelength response from 260 nm to 380 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.