Abstract
Fossil-fuel-based power generation leads to higher energy costs and environmental impacts. Solar and wind energy are abundant important renewable energy sources (RES) that make the largest contribution to replacing fossil-fuel-based energy consumption. However, the uncertain solar radiation and highly fluctuating weather parameters of solar and wind energy require an accurate and reliable forecasting mechanism for effective and efficient load management, cost reduction, green environment, and grid stability. From the existing literature, artificial neural networks (ANN) are a better means for prediction, but the ANN-based renewable energy forecasting techniques lose prediction accuracy due to the high uncertainty of input data and random determination of initial weights among different layers of ANN. Therefore, the objective of this study is to develop a harmony search algorithm (HSA)-optimized ANN model for reliable and accurate prediction of solar and wind energy. In this study, we combined ANN with HSA and provided ANN feedback for its weights adjustment to HSA, instead of ANN. Then, the HSA optimized weights were assigned to the edges of ANN instead of random weights, and this completes the training of ANN. Extensive simulations were carried out and our proposed HSA-optimized ANN model for solar irradiation forecast achieved the values of MSE = 0.04754, MAE = 0.18546, MAPE = 0.32430%, and RMSE = 0.21805, whereas our proposed HSA-optimized ANN model for wind speed prediction achieved the values of MSE = 0.30944, MAE = 0.47172, MAPE = 0.12896%, and RMSE = 0.55627. Simulation results prove the supremacy of our proposed HSA-optimized ANN models compared to state-of-the-art solar and wind energy forecasting techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.