Abstract

AbstractRecords of the solar magnetic field extend back for millennia, and its surface properties have been observed for centuries, while helioseismology has recently revealed the Sun's internal rotation and the presence of a tachocline. Dynamo theory has developed to explain these observations, first with idealized models based on mean-field electrodynamics and, more recently, by direct numerical simulation, notably with the ASH code at Boulder. These results, which suggest that cyclic activity relies on the presence of the tachocline, and that its modulation is chaotic (rather than stochastic), will be critically reviewed. Similar theoretical approaches have been followed in order to explain the magnetic properties of other main-sequence stars, whose fields can be mapped by Zeeman-Doppler imaging. Of particular interest is the behaviour of fully convective, low-mass stars, which lack any tachocline but are nevertheless extremely active.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.