Abstract

Recent data released by the AMS experiment on the primary spectra and secondary-to-primary ratios in cosmic rays (CRs) can pose tight constraints to astrophysical models of CR acceleration and transport in the Galaxy, thereby providing a robust baseline of the astrophysical background for dark matter search via antimatter. However, models of CR propagation are affected by other important sources of uncertainties, notably from solar modulation and nuclear fragmentation, that cannot be improved with the sole use of the AMS data. The present work is aimed at assessing these uncertainties and their relevance in the interpretation of the new AMS data on the boron-to-carbon (B/C) ratio. Uncertainties from solar modulation are estimated using improved models of CR transport in the Heliosphere constrained against various type of measurements: monthly-resolved CR data collected by balloon-born or space missions, interstellar flux data from the Voyager-1 spacecraft, and counting rates from ground-based neutron monitor detectors. Uncertainties from nuclear fragmentation are estimated using semiempirical cross-section formulae constrained by measurements on isotopically-resolved and charge-changing reactions. We found that a proper data-driven treatment of solar modulation can guarantee the desired level of precision, in comparison with the improved accuracy of the recent data on the B/C ratio. On the other hand, nuclear uncertainties represent a serious limiting factor over a wide energy range. We therefore stress the need for establishing a dedicated program of cross-section measurements at the $\mathcal{O}$(100 GeV) energy scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.