Abstract
In this paper, the energy and exergy performance of a double-pass solar air heater (SAH) using a novel model of a v-corrugated wire mesh absorber (CM-SAH) is investigated experimentally. The v-corrugated wires are adjacent to each other in one layer along the airflow direction to reduce the hydraulic resistance. Simultaneously, this arrangement increases the surface absorptance rate of solar radiation and expands the heat exchange area. To evaluate the performance of CM-SAH, a standard SAH having a v-corrugated absorber plate (CP-SAH) and the same configuration dimensions is compared with CM-SAH. The comparison is achieved under the same operating conditions and using different air mass flow rates of (0.01, 0.02, and 0.03 kg/s). The results show that the CM-SAH outperformed the CP-SAH in terms of thermal efficiency, exergy efficiency, and output air temperature. The maximum thermal efficiencies reach 87.3 % and 65.1 %, while the maximum exergy efficiencies reach 4.4 % and 3.4 %, for CM-SAH and CP-SAH, respectively. In addition, the thermal efficiency of CP-SAH decreased after midday while that of CM-SAH continuously increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.