Abstract
We analyze intermediate-degree p-mode eigenfrequencies measured by Global Oscillation Network Group and Michelson Doppler Imager/Solar and Heliospheric Observatory over a solar cycle to study the source of their variability. We carry out a correlation analysis between the change in frequencies and several measures of the Sun's magnetic activity that are sensitive to changes at different levels in the solar atmosphere. The observations span a period of about 12 years starting from mid-1996 (the minimum of cycle 23) to early-2008 (near minimum of cycle 24), corresponding to a nearly complete solar activity cycle. We demonstrate that the frequencies do vary in phase with the solar activity indices, however, the degree of correlation differs from phase to phase of the cycle. During the rising and declining phases, the mode frequency shifts are strongly correlated with the activity proxies whereas during the high-activity period, the shifts have significantly lower correlation with all activity proxies, except for the 10.7 cm radio flux. In particular, the proxies that are only influenced by the variation of the strong component of the magnetic field in the photosphere have a much lower correlation at the high-activity period. On the other hand, the shifts are better correlated with the proxies sensitive to changes in the weak component of the magnetic field. Our correlation analysis suggests that more than 90% of the variation in the oscillation frequencies in all activity phases can be explained by changes in both components of the magnetic field. Further, the slopes obtained from the linear regression analysis also differ from phase to phase and show a strong correlation with the correlation coefficients between frequency shifts and solar activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.