Abstract
Context: Manganese is predominantly synthesised in Type Ia supernova (SN Ia) explosions. Owing to the entropy dependence of the Mn yield in explosive thermonuclear burning, SNe Ia involving near Chandrasekhar-mass white dwarfs (WDs) are predicted to produce Mn to Fe ratios significantly exceeding those of SN Ia explosions involving sub-Chandrasekhar mass primary WDs. Of all current supernova explosion models, only SN Ia models involving near-Chandrasekhar mass WDs produce [Mn/Fe] > 0.0. Aims: Using the specific yields for competing SN Ia scenarios, we aim to constrain the relative fractions of exploding near-Chandrasekhar mass to sub-Chandrasekhar mass primary WDs in the Galaxy. Methods: We extract the Mn yields from three-dimensional thermonuclear supernova simulations referring to different initial setups and progenitor channels. We then compute the chemical evolution of Mn in the Solar neighborhood, assuming SNe Ia are made up of different relative fractions of the considered explosion models. Results: We find that due to the entropy dependence of freeze-out yields from nuclear statistical equilibrium, [Mn/Fe] strongly depends on the mass of the exploding WD, with near-Chandraskher mass WDs producing substantially higher [Mn/Fe] than sub-Chandrasekhar mass WDs. Of all nucleosynthetic sources potentially influencing the chemical evolution of Mn, only explosion models involving the thermonuclear incineration of near-Chandrasekhar mass WDs predict solar or super-solar [Mn/Fe]. Consequently, we find in our chemical evolution calculations that the observed [Mn/Fe] in the Solar neighborhood at [Fe/H] > 0.0 cannot be reproduced without near-Chandrasekhar mass SN Ia primaries. Assuming that 50 per cent of all SNe Ia stem from explosive thermonuclear burning in near-Chandrasekhar mass WDs results in a good match to data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.