Abstract

Solanesol, which mainly accumulates in solanaceous crops, including tobacco, tomato, potato, eggplant, and pepper plants, is a long-chain polyisoprenoid alcohol compound with nine isoprene units. Chemical synthesis of solanesol is difficult; therefore, solanesol is primarily extracted from solanaceous crops, particularly tobacco leaves. In plants, solanesol exists in both free and esterified forms, and its accumulation is influenced by genetic and environmental factors. Solanesol is widely used in the pharmaceutical industry as an intermediate for the synthesis of ubiquinone drugs, such as coenzyme Q10 and vitamin K2. Solanesol possesses antibacterial, antifungal, antiviral, anticancer, anti-inflammatory, and anti-ulcer activities, and solanesol derivatives also have anti-oxidant and antitumour activities, in addition to other bioactivities. Solanesol derivatives can also be used for the treatment of cardiovascular disease, osteoporosis, acquired immune deficiency syndrome, and wound healing. Solanesol biosynthesis occurs in plastids of higher plants via the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway. The key enzymes in solanesol biosynthesis, including 1-deoxy-d-xylulose-5-phosphate synthase, 1-deoxy-d-xylulose-5-phosphate-reductoisomerase, isopentenyl pyrophosphate isomerase, and solanesyl diphosphate synthase, are also important regulators of the MEP pathway, and their overexpression is favourable for downstream metabolic flow, further promoting the synthesis of downstream metabolites, such as solanesol. Future studies should determine the pharmacokinetic properties of solanesol and its derivatives and investigate the metabolic pathways and regulatory mechanisms mediating solanesol biosynthesis, metabolic and genetic engineering of solanesol, the synthetic biology of solanesol, and the physiological role of solanesol. In the present review, we systematically summarise current knowledge on solanesol resources, derivatives, bioactivities and medicinal applications, metabolic pathways, and key biosynthetic enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.