Abstract
The pedestal turbulence intensity required to convert the thin, laminar H-mode scrape-off layer (SOL) to a broad turbulent SOL is calculated using the theory of turbulence spreading. A lower bound on the pedestal turbulence level to exceed the neoclassical heuristic drift (HD) width is derived. A reduced model of SOL turbulence spreading is used to determine the SOL width as a function of intensity flux from the pedestal to the SOL. The cross-over value for exceeding the HD model width is then calculated. We determine the pedestal turbulence levels—and the critical scalings thereof—required to achieve this level of broadening. Both drift wave and ballooning mode turbulence are considered. A sensitivity analysis reveals that the key competition is that between spreading and linear E × B shear damping. The required pedestal turbulence levels scale with ρ/R.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.