Abstract
Starting from an aqueous solution, porous zinc ferrite-based xerogel monoliths have been prepared via a sol–gel route accompanied by phase separation mediated by propylene oxide in the presence of poly(acrylamide). The xerogels possess well-defined macropores, and the macroporous morphologies could be easily controlled (macropore size ranges from 0.55 to 1.29 μm) by simply changing the starting composition. As-dried xerogel samples were amorphous under X-ray diffraction, while heat-treatment in air brought about the formation of spinel type ferrite phase, ZnFe2O4. Calcination under Ar atmosphere allowed the crystallization of various iron-based phases/carbon composites (Fe3O4, Fe1-δO, Fe3N, Fe4N, Fe3C, and Fe). Samples heated under Ar flow exhibited hierarchical pore structures, including continuous macropores, in addition to mesopores and micropores embedded in the carbon-containing composite matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.