Abstract
A series of spinel-type MnxNi1-xCo2O4 (x = 0, 0.3, 0.5, 0.7, 1) oxides were synthesized by using a citrate sol-gel technique. The structural, magnetic and electronic properties of the oxides with different Mn content were investigated using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), vibrating sample magnetometer (VSM) and X-ray photoelectron spectroscopy (XPS). The XRD and FTIR studies revealed that MnxNi1-xCo2O4 formed in a cubic structure for all the compositions synthesized. Transmission electron microscopy (TEM) studies show cubic nano-plates for x = 0 and on increasing Mn concentration, agglomerated nanoparticles with sphere-like shape are observed with a particle size in the range of 11.7 nm–22.1 nm. This is in close agreement with the results of XRD analysis. The Mn 2p, Ni 2p, and Co 2p XPS spectra reveal the coexistence of Mn2+, Mn3+, Ni2+, Ni3+, Co2+, and Co3+ species on the surface of MnxNi1-xCo2O4 samples in differing proportions. The measurements of magnetic properties at room temperature show that the samples have some ferromagnetic behaviour. The saturation magnetization, remnant magnetization, and coercivity of the nanoparticles vary significantly with a concentration of Mn, which tends to be distributed in both tetrahedral and octahedral positions of the spinel lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.