Abstract

A membrane for efficient oil-in-water emulsion separation requires a surface with hydrophilic/underwater oleophobic properties. In this study, a simple and facile sol–gel strategy was proposed for preparing oil-in-water emulsion separation membrane with hydrophilic/underwater oleophobic surface by growing amorphous SiO2 sheets on an electrospun polyacrylonitrile nanofiber membrane (PAN NFM). The composite membranes (PAN@SiO2 NFMs) showed excellent properties in mechanical strength, hierarchical microporous structure, hydrophilicity and underwater oleophobicity, as well as remarkable performance in water flux, separation efficiency and cyclic stability. Under a low pressure of 1 kPa driven by the self-weight of emulsion, the PAN@SiO2 NFM demonstrated a large flux of 3994.3 ± 356.0 L m−2 h−1 and a high separation efficiency of 99.50%. In ten successive cycle tests, fluxes of the PAN@SiO2 NFM remained above 3000 L m−2 h−1, while the residual TOC in filtrate was stable at around 30 mg L−1, indicating the PAN@SiO2 NFM has excellent cyclic stability. It is also demonstrated that the PAN@SiO2 NFM is suitable for the separation of various kinds of emulsions, such as toluene, n-heptane, paraffin liquid, n-hexane and xylene. Hence, the prepared PAN@SiO2 NFM is a promising hydrophilic/underwater oleophobic membrane for efficient emulsion separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.