Abstract

InTaO4 is an efficient visible-light photocatalyst, which used to be synthesized by solid-state fusion at over 1100 °C. However, irregular morphology and severe agglomeration of particles were acquired due to nonuniform fusion of solid precursors. In this study, InTaO4 was synthesized by two sol-gel routes, the thermal hydrolysis and esterification methods. The precursors were indium (III) nitrate pentahydrate [In(NO3)3] and tantalum(V) butoxide [Ta(OC4H9)5] dissolved in solutions. The InTaO4 powders with a uniform grain size of 17.7 nm were successfully synthesized using the esterification method at a calcination temperature of 950 °C. A uniform InTaO4 thin film nearly 40 nm thick formed on an optical fiber at 1100 °C using the sol prepared by the esterification method. For the first time, InTaO4 was evaluated by the photocatalytic activity of CO2 photo reduction, which was conducted in aqueous solution under visible light irradiation. Cocatalyst NiO was loaded on the surface of InTaO4 to further enhance the methanol yield. The methanol yields of NiO/InTaO4 by esterification method were significantly higher than those by solid-state fusion. The esterification method provided homogeneous mixing of Ta(OC4H9)5 and In(NO3)3, resulting in nano-sized InTaO4 with uniform crystallinity and superior photocatalytic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.