Abstract

AbstractA new nanocomposite electrolyte was synthesized using a simple non-hydrolytic sol-gel route without specific treatment of the reagents. The nanocomposite ion conductor was prepared with citric acid, tetraethyl orthosilicate and ethylene glycol, forming polyester chains. The time-consuming drying step that is a necessary part of most chemical syntheses was not required in the preparation of the present nanocomposite electrolyte of the polyelectrolyte class, because only Li+ is mobile in the polymeric chain. The effects of the concentration of Li, SiO 2 and SnO2nanoparticles were investigated in terms of Li+ ionic conductivity. Conductivity measurements as a function of the metal oxide nanocrystal content in the nanocomposite revealed a significant increase in conductivity at approximately 5 and 10 wt % of nanoparticles. The new nanocomposite conductor proved to be fully amorphous at room temperature, with a vitreous transition temperature of approximately 228K (−45°C). The material is solid and transparent, displaying an ionic conductivity of 10−4to 10−5 (O.cm)−1at room temperature presenting excellent reproducibility of all these characteristics. Cyclic voltammetry measurements indicate that the hybrid electrolyte possesses outstanding electrochemical stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call