Abstract

Porous silica-based microspheres encapsulating aqueous glycerol can be potential curing agents for one-component foams (OCFs). Such agents have the advantage of an enhanced sustainability profile on top of being environmentally friendly materials. A synthetically convenient and scalable sol-gel process was used to make silica and organosilica microspheres doped with aqueous glycerol. These methyl-modified silica microspheres, named “GreenCaps”, exhibit remarkable physical and chemical stability. The microspheres were characterized by scanning electron microscopy, transmission electron microscopy at reduced pressure, and cryogenic nitrogen adsorption—desorption analysis. The structure of the materials was also analyzed at the molecular level by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. As expected, the degree of methylation affects the degree of encapsulation and pore structure. Microspheres similarly methylated, however, can differ considerably in surface area and pore size due to the templating effect of glycerol on the organosilica structure. The results of the structure analysis reveal that glycerol is efficiently encapsulated, acts as a template, barely leaches over time, but is released by depressurization. A proper application of these microspheres can later on enhance both the environmental and health profile, as well as the technical performance (curing speed, foam quality, and froth thixotropy) of spray polyurethane foams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.