Abstract

Despite of several decades lasting extensive research of bioactive and bioresorbable glasses the systematic parametrization and determination of the key factors affecting porosity and thermomechanical characteristics still remains challenging. Here, we present silica-phosphate glasses, with the composition 70SiO2–20P2O5–(10-x)CaO–xTiO2 (mol%; x = 0, 2.5, 5, and 7.5), prepared by sol-gel method and reinforced by titanium dioxide via titanium isopropoxide (TTIP) incorporation which demonstrated tunable variation of porosity from micro-to macro-region and superb mechanical integrity during the calcination process. The presence of 7.5 mol% TiO2 promotes dimensional stability up to 1000 °C as investigated by thermomechanical analysis. The XRD showed the dominant presence of silicon phosphate [Si(P2O7)], titanium phosphate [Ti(P2O7)] and calcium phosphates [β-Ca(P2O6) and γ- Ca2(P2O7)]. The effect of TiO2 doping on the multiscale morphology and porosity was investigated by means of SEM, MIP, μCT, N2 adsorption and USAXS/SAXS. Increasing TiO2 content leads to the formation of open porosity up to 70 vol% and drives the formation of a refined interconnected macroporosity of 2–30 μm. In contrast, mesoporosity with a dominance of 3–6 nm pores decreases in all samples with increasing TiO2 content. USAXS/SAXS revealed an increase in primary particle size with increasing TiO2 content which is in good agreement with the nitrogen physisorption analysis showing that microporosity decreases with increasing TiO2 content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call