Abstract

AbstractThe silica‐based poly(dimethylsiloxane) (PDMS) microfluidic enzymatic reactor was reported along with its analytical features in coupling with MALDI TOF and ESI MS. Microfluidic chip was fabricated using PDMS casting and O2‐plasma techniques, and used for the preparation of enzymatic reactor. Plasma oxidation for PDMS enabled the channel wall of microfluidics to present a layer of silanol (SiOH) groups. These SiOH groups as anchors onto the microchannel wall were linked covalently with the hydroxy groups of trypsin‐encapsulated sol matrix. As a result, the leakage of sol‐gel matrix from the microchannel was effectively prevented. On‐line protein analysis was performed with the microfluidic enzymatic reactor by attachment of stainless steel tubing electrode and replaceable tip. The success of trypsin encapsulation was investigated by capillary electrophoresis (CE) detection, and MALDI TOF and ESI MS analysis. The lab‐made device provided excellent extent of digestion even at the fast flow rate of 7.0 (L/min with very short residence time of ca. 2 s. In addition, the encapsulated trypsin exhibits increased stability even after continuous use. These features are the most requisite for high‐throughput protein identification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call