Abstract

Silica coatings filled with nanoscaled inorganic fullerene-like tungsten disulphide (IF-WS2) have been prepared through a sol–gel process on stainless steel substrates, and the structure and mechanical properties have been investigated. The precursor was prepared from a mixture of colloidal silica, 3-glycidoxypropyltrimethoxysilane (GLYMO), water and ethanol, adjusted to pH 4 with HNO3. In this solution WS2 is dispersed and in some cases immediately before coating ethylenediamine (ED) is added. The stainless steel substrates are dip-coated, dried in air and heat-treated in the temperature range of either 150–360 °C in air or up to 900 °C in vacuum. The solidification process is followed by differential thermal analysis (DTA). The resulting brown coloured coatings have a thickness of 1.5–4 μm. Scanning electron microscopy investigations (SEM) show that the WS2 nanoparticles are embedded as small aggregates in a hybrid silica matrix. X-ray diffraction (XRD) measurements prove that most of the tungsten disulphide embedded in the matrix can be protected against oxidation even after curing the samples at temperatures up to 900 °C. Hardness and modulus of the hybrid silica films were measured through an instrumented indentation test. Increasing the temperature of the heat treatment yields an increase of hardness from 0.3 to 1 GPa and of modulus from 3 to 17 GPa. The amount of up to 10 wt.% WS2 in the coatings has no remarkable influence on hardness and modulus of the samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call