Abstract

Hydroxyapatite (HA) coatings have received considerable attention because they exhibit bone bonding capabilities. Unfortunately the common forms of coating production result in cracking and degradation of HA due to the thickness of the coatings and the elevated temperatures employed. This study demonstrates the production of sub-micron, crack-free calcium phosphate coatings on quartz glass substrates using a sol-gel dip-coating technique and firing temperatures below 1000°C. Coatings fired at 1000°C comprised a mixture of hydroxyapatite (HA) and tricalcium phosphate (TCP). XPS analysis of the coating surface showed that the Ca/P ratio lay in the range 1.5–1.67, and that there was a contribution from carbon in the form of carbonate. It is proposed that the sol-gel coatings comprising a resorbable (TCP) and an insoluble (HA) phase have potential benefits in certain implant applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.