Abstract

ZnO microstructures of different morphologies were synthesized by the sol–gel assisted hydrothermal method using Zn(NO3)2, citric acid and NaOH as raw materials. Twining-hexagonal prism, twining-hexagonal disk, sphere and flower-like ZnO microstructures could be synthesized only through controlling the pH of the hydrothermal reaction mixture at 11, 12, 13 and 14, respectively. The as-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM). Optical properties were examined by UV–Vis absorption/diffuse reflectance spectroscopy and room-temperature photoluminescence measurements (PL). Photocatalytic activities of the samples were evaluated by degradation of Reactive Blue 14 (KGL). The results indicated that the flower-like ZnO composed of nanosheets possessed superior photocatalytic activity to other ZnO microstructures and commercial ZnO, which could be attributed to the morphology, surface defects, band gap and surface area. The formation mechanisms of different ZnO morphologies were also investigated based on the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call