Abstract
Human-centered wireless sensing (HCWS) aims to understand the fine-grained environment and activities of a human using the diverse wireless signals around him/her. While the sensed information about a human can be used for many good purposes such as enhancing life quality, an adversary can also abuse it to steal private information about the human (e.g., location and person's identity). However, the literature lacks a systematic understanding of the privacy vulnerabilities of wireless sensing and the defenses against them, resulting in the privacy-compromising HCWS design. In this work, we aim to bridge this gap to achieve the vision of secure human-centered wireless sensing. First, we propose a signal processing pipeline to identify private information leakage and further understand the benefits and tradeoffs of wireless sensing-based inference attacks and defenses. Based on this framework, we present the taxonomy of existing inference attacks and defenses. As a result, we can identify the open challenges and gaps in achieving privacy-preserving human-centered wireless sensing in the era of machine learning and further propose directions for future research in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.