Abstract

We present formal models of the associative and causal views of differential privacy. Under the associative view, the possibility of dependencies between data points precludes a simple statement of differential privacy's guarantee as conditioning upon a single changed data point. However, we show that a simple characterization of differential privacy as limiting the effect of a single data point does exist under the causal view, without independence assumptions about data points. We believe this characterization resolves disagreement and confusion in prior work about the consequences of differential privacy. The associative view needing assumptions boils down to the contrapositive of the maxim that correlation doesn't imply causation: differential privacy ensuring a lack of (strong) causation does not imply a lack of (strong) association. Our characterization also opens up the possibility of applying results from statistics, experimental design, and science about causation while studying differential privacy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.