Abstract
Processor sharing (PS) queuing systems and particularly their well-known class of egalitarian processor (EPS) sharing are widely investigated by research community and applied for the analysis of wire and wireless communication systems and networks. The same can be said for queuing systems in random environment, with unreliable servers, interruptions, pre-emption mechanisms. Nevertheless, only few works focus on queues with both PS discipline and unreliable servers. In the paper, compared with the previous results we analyse a finite capacity PS queuing system with unreliable server and an upper limit of the number of customers it serves simultaneously. For calculating the mean sojourn time, unlike a popular but computational complex technique of inverse Laplace transform we use an effective method based on embedded Markov chains. The paper also includes a practical numerical example of web browsing in a wireless network when the corresponding low priority traffic can be interrupted by more priority applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.