Abstract

Tropical clay soil was compacted at different moisture conditions (dry, wet and optimum) and compactive efforts (Reduced proctor, Standard proctor, West African standard and Modified proctor). Experimental Soil-Water Characteristics (SWC) of the soil was derived using the pressure plate extractor equipment and SWC Curves (SWCC) plotted as gravimetric water content versus logarithm of matric suction. The Air Entry Values (A.E.V) obtained from experimental work ranged from 21 kPa to 59 kPa and compared favourably well with those estimated from predictive models with values of 23 kPa to 52 kPa. Specimens compacted with greater compactive effort (Modified proctor) and at optimum moisture content produced the largest air entry value of 59 kPa and reduced air voids. Changes observed in the shape of the SWCC were consistent with changes in pore size which occurred by varying compaction conditions. The shape of the soil-water characteristics curve was found to depend on the soil structure, compactive water content and compactive effort and not solely on the percentage of fine particles.

Highlights

  • Unsaturated soil behaviour is important in the construction of numerous geotechnical and geo-environmental structures such as earth dams, retaining walls, pavements liners and waste soil-covers

  • Changes observed in the shape of the SWC Curves (SWCC) were consistent with changes in pore size which occurred by varying compaction conditions

  • This study investigates the soil-water characteristics of typical unsaturated tropical clay soils under low and high suction

Read more

Summary

Introduction

Unsaturated soil behaviour is important in the construction of numerous geotechnical and geo-environmental structures such as earth dams, retaining walls, pavements liners and waste soil-covers. An unsaturated soil consists of four-phase system; solids, water, air and contractile skin (Fredlund & Morgenstern, 1977). Soils in this category are the natural, desiccated and compacted soils with nega-. Tive pore-water pressures and are subject to expansion and shrinkage. Unsaturated soils are found all over the world especially at shallow depths from the surface in arid and semi-arid areas where the natural ground water table is typically at a greater depth (Fredlund & Rahardjo, 1993)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.