Abstract

The large-scale storage and inundation of contaminated soils and sediments in deep waterlogged former sand pits or in lakes have become a fairly common practice in recent years. Decreasing water depth potentially promotes aquatic biodiversity, but it also poses a risk to water quality as was shown in a previous study on the impact on groundwater. To provide in the urgent need for practical and robust risk indicators for the storage of terrestrial soils in surface waters, the redistribution of metals and nutrients was studied in long-term mesocosm experiments. For a range of surface water turbidity (suspended matter concentrations ranging from 0 to 3000mg/L), both chemical partitioning and toxicity of pollutants were tested for five distinctly different soils. Increasing turbidity in surface water showed only marginal response on concentrations of heavy metals, phosphorus (P) and nitrogen (N). Toxicity testing with bioluminescent bacteria, and biotic ligand modelling (BLM), indicated no or only minor risk of metals in the aerobic surface water during aerobic mixing under turbid conditions. Subsequent sedimentation of the suspended matter revealed the chemical speciation and transport of heavy metals and nutrients over the aerobic and anaerobic interface. Although negative fluxes occur for Cd and Cu, most soils show release of pollutants from sediment to surface waters. Large differences in fluxes occur for PO4, SO4, B, Cr, Fe, Li, Mn and Mo between soils. For an indicator of aerobic chemical availability, dilute nitric acid extraction (0.43M HNO3; Aqua nitrosa) performed better than the conventional Aqua regia destruction. Both the equilibrium concentrations in surface waters, and fluxes from sediment, were adequately (r2 = 0.81) estimated by a 1mM CaCl2 soil extraction procedure. This study has shown that the combination of 0.43M HNO3 and 1mM CaCl2 extraction procedures can be used to adequately estimate emissions from sediment to surface waters, and assess potential water quality changes, when former sand pits are being filled with soil materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.