Abstract

The Gulf Cooperation Countries have the advantages of fundamental characteristics and abundant natural resources due to the high proportion of solar radiation, which helps to expand the transition to renewable energy, especially in solar projects. The Kuwait location was chosen for this research because of its high dust levels and average daily sunshine of 9.4 hours. The soiling map of Kuwait was then created using PVsyst software. A theoretical and mathematical model for 100 MW was developed based on many environmental and technical parameters. The model was run with Kuwait parameters and 100 MW solar PV power plant capacity. The results show that more than 25% of total generated electricity could be lost annually without any mitigation strategy. Furthermore, the efficiency loss could increase by around 50% during the seasons with sandstorms and high soiling rates. Additionally, manual and automatic cleaning methods were found to increase energy production from 112,092 MWh to 207,300 MWh. Moreover, manual cleaning reduced energy costs by 4.9%, but automated cleaning resulted in a 17.34% higher energy-saving cost than a system without cleaning. In addition, when using the automatic cleaning system, the system’s payback period was reduced from 9.22 to 7.86 years. Therefore, an automated cleaning system is recommended for use in Kuwait.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call