Abstract

Plantation forests (PF) and natural secondary forests (NSF) are the primary reforestation approaches. The establishment of PF can affect forest hydrological processes by changing soil structure. To date, few studies have focused on these changes and the effects on hydrological processes for the paleo-periglacial landform. To reveal reforestation approaches effects on water infiltration, including soil water infiltration capacity, retention capacity, and waterflow path pattern, we conducted field dye-tracer investigations with rainfall and laboratory infiltration experiments for the paleo-periglacial landform of eastern Liaoning mountains, China. The results showed that (1) Soil physical properties (including total porosity (TP), capillary porosity (CP), non-capillary porosity (NCP), initial soil water content (IWC), field water capacity (FWC)) and root abundance (RA) decreased with soil depth in both PF and NSF, while the soil bulk density (BD) and distribution of gravel content showed opposite changes. (2) Establishment of PF reduced the infiltration capacity and water retention capacity in the 0–20 cm layer, but enhanced the water retention capacity in 20–30 cm layer. Low IWC was conducive to increase soil water content (SWC) after infiltration. (3) Infiltration capacity parameters (including saturated hydraulic conductivity (Ks), SWC, difference between SWC and IWC (SWC–IWC), dye coverage ratio (DC)) were significantly correlated with BD, TP, CP, NCP, FWC, and fine roots RA (P < 0.05). Better connectivity gravels were more conducive to water infiltration. (4) Preferential flow was the main infiltration type, but with different waterflow paths pattern, with the 'funnel', 'finger' shape for PF, NSF, respectively. Increasing infiltration could increase flow path connectivity. Our findings show that soil physical properties, roots, and gravel occurrence affected soil infiltration, and different reforestation approaches had varying impacts on soil infiltration, water redistribution, transportation, and storage of surface and groundwater, improving the understanding of ecohydrological processes and effects of water resources management in forest ecosystems of paleo-periglacial landform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call