Abstract
Experiments were undertaken to study the soil-water characteristics of compacted sandy soil (SS) and cemented soil (CS) in field and laboratory conditions. The influence of vegetation and material density on the development of negative pore-water pressure (PWP) and degree of saturation (Sr) in the studied materials was investigated. The field planting experiments demonstrated a promising survival rate of Schefflera heptaphylla in both types of material, while the (SS) promoted better growth of the seedlings than the cemented one. In the field study, PWP and Srof the compacted SS responded noticeably and promptly to natural drying–wetting cycles. However, the responses in the CS were relatively mild. When subjected to the same drying–wetting cycles, PWP responded more slowly and to a smaller magnitude compared with that of the uncemented counterpart. In addition, Srchanged little in CS. An increase in the density of the SS promoted rapid development of negative PWP, while an opposite trend was observed for CS. Attempts have been made to explain the observations from the perspectives of material permeability and change in water content during a drying period in both soil types. Furthermore, in SS, the development of PWP (with a measurement limit of −90 kPa) was minimally affected by the presence of vegetation, while vegetation noticeably helped the development of negative PWP in CS. Bounds of the soil-water characteristic curve (SWCCs) of the studied materials were presented based on estimates from the drying and wetting scanning curves derived from the field monitoring. A corresponding laboratory study was carried out in an environmental chamber with controllable temperature and humidity. Monitoring results from the laboratory agreed qualitatively with those obtained from the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.