Abstract

Precipitation infiltration is one of the most significant triggering factors for slope failure occurrence in many places around the world. Knowledge of the mechanisms leading to precipitation-induced slope failures is of great importance to the management of landslide hazard. In this study, a soil water balance model is developed to estimate soil water flux during the process of infiltration from rainfall data, with consideration of storm periods and non-storm periods. Two important assumptions in this study are given: (1) instantaneous uniform distribution of the degree of saturation and (2) a linear relationship between evapotranspiration and the related degree of saturation. For storm periods, the Brooks and Corey model estimates both the soil water retention curve and soil water parameters. The infiltration partition is employed by an infinite-series solution of Philip in conjunction with the time compression approximation. For none-storm periods, evapotranspiration can be derived for the moisture depletion of soil water. This study presents a procedure for calculating the safety factor for an unsaturated slope suffering from precipitation infiltration. The process of infiltration into a slope due to rainfall and its effect on soil slope behavior are examined using modified Mohr–Coulomb failure criterion in conjunction with a soil water balance model. The results indicate that the matric suction, which is closely related to slope stability, is affected by the degree of saturation controlled by rainfall events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call