Abstract

Soil washing is a rapid and efficient remediation technique for soil contaminated by heavy metals. In this study, Cd, Pb, and Zn were removed from contaminated soil by ethylenediamine tetra (methylene phosphonic acid) (EDTMP) and polyacrylic acid (PAA). We then investigated the effect of varying the concentration, pH and duration of the washing processes. Single-factor experiments suggest that the PAA washing process may be dominated by electrostatic adsorption, and is suitable for remediation under weak acid and neutral conditions. Meanwhile, EDTMP remediation might be dominated by chelation, which is favorable in strong acid and alkaline environments. In a quadratic saturation D-optimization design (QSDD), we optimized the washing parameters and further explored the washing mechanism including primary factor, principal effect, interaction effect, and the optimal washing conditions, with simultaneously changing multiple influencing factors. The optimum efficiencies of Cd, Pb, and Zn removal were 92.74%, 96.14%, and 50.76% respectively in EDTMP remediation, and 84.62, 79.24, and 41.66% respectively in PAA remediation. The washing processes effectively reduced the availability of Cd, Pb, and Zn in contaminated soil, without noticeably affecting soil chemical properties. Therefore, the washing incurred little ecological risk. EDTMP and PAA are suitable remediation agents of soil contaminated by heavy metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.