Abstract

Chitin amendment of peat substrate has been proven effective in promoting lettuce growth and increasing phenolic compounds in lettuce seedlings. However, the effect of chitin soil amendment on lettuce growth in mineral soil remains unexplored. The effect of chitin amendment of mineral soil on lettuce growth and metabolite changes was investigated for the first time in the present study in comparison with chitin-amended peat substrate. Our findings showed that chitin addition in peat substrate increased lettuce head weight by approximately 50% at harvest, whereas this increase was 30% when chitin was added to mineral soil. Targeted metabolomics analysis indicated that chitin addition affected the phenolic compounds in lettuce seedlings, but this effect varied between soil types. Moreover, untargeted metabolomics analysis suggested that using peat substrate or mineral soil had a greater influence on produced lettuce metabolites than chitin addition. Rhizobiome analysis showed that specifically Mortierellaceae family members, known for chitin degradation and plant growth promotion, significantly increased in peat substrate upon chitin treatment. In mineral soil, three bacterial genera and five fungi, including known plant-growth-promoting genera, were significantly more abundant upon chitin treatment but Mortierellaceae family members were not. We assume that the observed effects primarily stem from soil characteristics and from chitin-induced alterations in rhizobiome composition, particularly the presence of Mortierellaceae members, leading to promoted lettuce growth. Despite the variability, chitin remains an environmentally friendly alternative to synthetic fertilizers in lettuce production, but its beneficial effects are dependent on rhizobiome composition, which should be considered before chitin application. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.