Abstract

The ground source heat pump systems with spiral-coil energy piles are promising for building energy saving in high-density cities. However, when applied in heating-dominant buildings, the soil thermal imbalance causes soil temperature decrease and heating performance degradation in long-term operations. To analyze the effect of different influential factors on the soil thermal imbalance, an analytical model for spiral-coil energy pile group under seepage conditions is proposed, considering different heat fluxes of piles and time variation of heat fluxes. A sandbox experiment is used to validate the proposed model, based on which a system model is further established to investigate the long-term performance ground source heat pumps. Results show that (1) the energy piles in the outer layers of the group, at the upstream of the seepage flow direction, with a large pile spacing, or arranged in a line shape exchange more heat with soil; (2) the groundwater effectively alleviates the temperature decreases of soil near the energy piles and located at the upstream; (3) the groundwater flow, a slim pile layout, a large pile spacing, and a short pile length are effective to alleviate the decreases of the outlet fluid temperature and heating efficiency, contributing to higher heating capacities and lower energy consumptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.