Abstract
Recently, portable X-ray fluorescence (pXRF) spectrometer and visible near-infrared (Vis-NIR) spectroscopy are increasingly being applied for soil types and attributes prediction, but a few works have used them combined in tropical regions. Thus, this work aimed at analyzing models’ performance when predicting soil types at subgroup taxonomic level via pXRF and Vis-NIR separately and together. 315 soil samples were collected in both A and B horizons in three important Brazilian states. Samples undergone laboratorial analyses for soil classification and were submitted to pXRF and Vis-NIR (350–2500 nm) analyses. Vis-NIR spectral data preprocessing was evaluated utilizing Savitzky-Golay (WT) and Savitzky-Golay with Binning (WB) methods. Four classification algorithms were employed in modeling: Support Vector Machine with Linear (SVM-L) and Radial (SVM-R) kernel, C5.0, and Random Forest (RF). Predictions were made using only B horizon and using A + B horizon data. Overall accuracy and Cohen’s Kappa index evaluated model quality. Both sensors displayed efficacy in soil types prediction. A + B horizons data combined using pXRF + Vis-NIR via SVM-R (WT and WB) delivered accurate predictions (89.32% overall accuracy and 0.75 Kappa index), but the best predictions were achieved using only B horizon data via pXRF with RF, pXRF + Vis-NIR (WT) with RF, pXRF + Vis-NIR (WB) with C5.0, and pXRF + Vis-NIR (WB) with RF (89.23% overall accuracy and 0.80 Kappa index). For tropical soils, soil subgroup prediction using only B horizon data obtained by pXRF in tandem with RF algorithm may be a viable alternative to assist in soil classification, especially when the acquisition of Vis-NIR is not possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.