Abstract
This article explains the results of a study conducted on the characterizations of subgrade soils in the region of Thies. The road platforms are mainly composed of a background soil, which is generally overlapped by a surface layer that plays two roles. Firstly, it protects the soil structure, ensures the leveling, and facilitates the movement of vehicles. Secondly, it brings harmony in the mechanistic characteristics of the materials that compose the soil while improving the long-term life force. The methodology consisted in taking samples of subgrade soil along the roads all over the region of Thies in a 5 km diameter span. The identification tests allowed the Thies-Tivaoune, Thies-Khombole and Thies-Noto axes are characterized by tight sands, poorly graded size. While Thies Pout-axis is characteristic of severe solid particle size and spread well graded and serious to spread and well graded particle size. Finally the Thies-Montrolland axis is characterized by severe to very tight particle size and graduated to spread and serious and well graded particle size. The specific gravity values found Proctor test shows the presence of sand, sandy laterite and laterite. In the target area, polished soils of the A-3 type according to the AASHTO classification system are the most represented with 60%, followed by the A-2-6 type 25%, and the A-2-4 type with 9%, which are typical of gravel, clay, and silty sands. Soils of the A-1-b type (2%) typical of roc fragments, sands and clay are also represented. Polished sands of the A-3 type have a better efficiency on road infrastructures than other types of soil listed above. Finally, we’ve also noted the presence of soils of the A-2-7 and A-4 types with the low percentage of 2%. Subgrade soils of class S4 are the most represented with 58%, followed by those of class S5 with 42%. Samples of the Thies-Montrolland road have a claylike plasticity (CL or CH group), while those of the Thies-Pout road belong to the ML or OL and CL or OL groups with a tendency mostly directed to the CL or OL group. All these results confirm the very nature of soils on the two roads and put the light on the presence of lateritic materials with certain plasticity.
Highlights
Road infrastructures are among the key criteria currently used to measure the development of countries in general; that’s why their construction is of paramount importance
From the viewpoint of particle size allowed, the Thies-Tivaoune, Thies-Khombole and Thies-Noto axes are characterized by tight sands, poorly graded size
While Thies Pout-axis is characteristic of severe solid particle size and spread well graded and serious to spread and well graded particle size
Summary
Road infrastructures are among the key criteria currently used to measure the development of countries in general; that’s why their construction is of paramount importance. They are vital to the transportation of people and goods; developing countries are investing in roads that contribute to boosting their economy by facilitating movement to and from their most isolated areas. The study aims at studying the characterization of platform soils for the sake of a mechanistic dimensioning. Samples of subgrade soil were taken over a diameter of 5 km on both sides of roads going through Thies. Knowledge of the identification parameters and the classification of soils based on the AASHTO system made it easy to deal with the mechanistic pavement design
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.