Abstract
AbstractThe unprecedented increasing cost of steel coupled with the superior mechanical and anticorrosion properties of fiber-reinforced plastic (FRP) creates a huge opportunity for FRP pipes to take the market share of steel and be the pipe of choice for geotechnical engineers for a variety of applications ranging from potable-water systems to feed lines and penstock for hydroelectric power plants. Recently, very flexible large-diameter FRP pipes have been installed in eastern Canada and the United States to replace old wood-stave pipes to convey water to drive the turbines of small hydroelectric plants. The behavior of buried very flexible pipes is one of the complex soil-structure interaction (SSI) problems in geotechnical engineering and has not been studied thoroughly until now. The flexibility classification of pipes is determined based on their effective stiffness. Accordingly, flexible pipes will have an effective flexibility of 10 kPa/m or less. In this paper, the results of centrifuge modeling o...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.