Abstract

Analysis of a flight of alluvial terraces in the Sierra Nevada National Park near Pico Mucuñuque in the Eastern Mérida Andes has yielded information on geomorphic, pedogenic, and vegetational changes from Late Glacial time to the present. The terraces formed in large part due to stream incision/migration triggered by neotectonic uplift (>7000 yr BP) of a Late Glacial/Early Holocene glaciolacustrine lithosequence and, with the exception of the oldest/highest terrace, exhibit near-uniform lithology/parent materials. Soils developed in the terrace materials range from thin, weakly developed profiles (O/C/Cu horizons) to Entisols with O/Ah/Cox/Cu horizons and similar buried counterparts representing former short periods of floodplain stability or slow aggradation. The buried soils provide organic-rich material that yields radiocarbon ages, which provide time constraints on individual pedons and the geomorphic development of the site. Iron and aluminum extracts of soil matrix material provide information on the formation and accumulation of goethite and hematite, the relative accumulation of ferrihydrite (gain/loss), and the downward translocation of organically complexed Al as a function of soil development and age. SEM analysis of heavy mineral grains indicates varying material sources and degrees of weathering in the soil chronosequence. A qualitative study of plant functional types across the terrace sequence shows that older surfaces support greater plant diversity. The study also suggests ways in which the plant communities influence soil development at the site through varying organic matter inputs and varying soil moisture use by specific species (e.g., ferns on the oldest terrace), which may explain the absence of B horizons in the Late Pleistocene/Early Holocene soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.