Abstract
Interactions between plants and soil microbial communities underpin soil processes and forest ecosystem function, but the links between tree diversity and soil microbial diversity are poorly characterized. Differences in both the taxonomic and functional diversity of trees and microbes can shape soil nutrient status and carbon storage, but the stoichiometry of carbon and nutrients in the soil also influences resource availability to plant and microbial communities. Given the key role of resource availability in plant–soil interactions, we hypothesized that relationships between tree diversity metrics and soil bacterial or fungal diversity are mediated by soil stoichiometry. To test our hypothesis, we measured tree diversity metrics (tree species richness, functional trait diversity and functional trait composition) and soil stoichiometry in a temperate forest in China, and we determined soil microbial diversity by Illumina sequencing. We used structural equation models to assess the relationships between tree diversity metrics and soil bacterial or fungal diversity and to evaluate the influence of soil stoichiometry. Overall, microbial diversity was strongly related to soil stoichiometry, whereby fungal diversity was associated with high soil N/P ratios, whereas bacterial diversity was related to high soil C/P ratios. Soil bacterial and fungal diversity were more closely related to tree functional trait diversity and composition than to tree species richness, and the links between tree and soil microbial diversity were mediated by soil stoichiometry. The strong links between tree functional traits, soil stoichiometry and soil bacteria or fungi suggest that resource quality plays a key role in plant–microbial interactions. Our results highlight the importance of nutrient stoichiometry in linkages between tree functional diversity and soil microbial diversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.