Abstract

Accurate monitoring of soil salinization plays a key role in the ecological security and sustainable agricultural development of arid regions. As a branch of artificial intelligence, machine learning acquires new knowledge through self-learning and continuously improves its own performance. The purpose of this study is to combine Sentinel-2 Multispectral Imager (MSI) data and MSI-derived covariates with measured soil salinity data and to apply three machine learning algorithms in modeling to estimate and map the soil salinity in the study sample area. According to the convenient transportation conditions, the study area and sampling quadrat were set up, and the 5-point method was used to collect the soil mixed samples, and 160 soil mixed samples were collected. Kennard–Stone (K–S) algorithm was used for sample classification, 70% for modeling and 30% for verification. The machine learning algorithm uses Support Vector Machines (SVM), Artificial Neural Network (ANN), and Random Forest (RF). The results showed that (1) the average reflectance of each band of the MSI data ranged from 0.21–0.28. According to the spectral characteristics corresponding to different soil electrical conductivity (EC) levels (1.07–79.6 dS m−1), the spectral reflectance of salinized soil in the MSI data ranged from 0.09–0.35. (2) The correlation coefficient between the MSI data and MSI-derived covariates and soil EC was moderate, and the correlation between certain MSI data sets and soil EC was not significant. (3) The SVM soil EC estimation model established with the MSI data set attained a higher performance and accuracy (R2 = 0.88, root mean square error (RMSE) = 4.89 dS m−1, and ratio of the performance to the interquartile range (RPIQ) = 1.96, standard error of the laboratory measurements to the standard error of the predictions (SEL/SEP) = 1.11) than those attained with the soil EC estimation models established with the RF and ANN models. (4) We applied the SVM soil EC estimation model to map the soil salinity in the study area, which showed that the farmland with higher altitudes discharged a large amount of salt to the surroundings due to long-term irrigation, and the secondary salinization of the farmland also caused a large amount of salt accumulation. This research provides a scientific basis for the simulation of soil salinization scenarios in arid areas in the future.

Highlights

  • Soil salinization is an important ecological and environmental problem in arid and semiarid regions globally, and it seriously affects ecological stability, regional ecology, food security, and sustainable agricultural development [1]

  • (3) The Support Vector Machines (SVM) soil electrical conductivity (EC) estimation model established with the Multispectral Imager (MSI) data set attained a higher performance and accuracy (R2 = 0.88, root mean square error (RMSE) = 4.89 dS m−1, and ratio of the performance to the interquartile range (RPIQ) = 1.96, standard error of the laboratory measurements to the standard error of the predictions (SEL/SEP) = 1.11) than those attained with the soil EC estimation models established with the Random Forest (RF) and Artificial Neural Network (ANN) models

  • (4) We applied the SVM soil EC estimation model to map the soil salinity in the study area, which showed that the farmland with higher altitudes discharged a large amount of salt to the surroundings due to long-term irrigation, and the secondary salinization of the farmland caused a large amount of salt accumulation

Read more

Summary

Introduction

Soil salinization is an important ecological and environmental problem in arid and semiarid regions globally, and it seriously affects ecological stability, regional ecology, food security, and sustainable agricultural development [1]. As a form of land degradation, soil salinization can accelerate the desertification process and cause the deterioration of the Remote Sens. Soil salinization inhibits the absorption of water and nutrients by plants, thereby affecting physiology and biochemistry attributes of plants [3]. The timely and accurate acquisition of soil salinization information has an extremely important practical significance for the prevention and control of land degradation and ecological restoration in arid areas. Traditional soil salinization monitoring hardly obtains large-scale salinization distribution information, and it is difficult to monitor soil salinization dynamics on a large scale

Objectives
Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.