Abstract

The Rhinelander free-air CO(2) enrichment (FACE) experiment is designed to understand ecosystem response to elevated atmospheric carbon dioxide (+CO(2)) and elevated tropospheric ozone (+O(3)). The objectives of this study were: to understand how soil respiration responded to the experimental treatments; to determine whether fine-root biomass was correlated to rates of soil respiration; and to measure rates of fine-root turnover in aspen (Populus tremuloides) forests and determine whether root turnover might be driving patterns in soil respiration. Soil respiration was measured, root biomass was determined, and estimates of root production, mortality and biomass turnover were made. Soil respiration was greatest in the +CO(2) and +CO(2) +O(3) treatments across all three plant communities. Soil respiration was correlated with increases in fine-root biomass. In the aspen community, annual fine-root production and mortality (g m(-2)) were positively affected by +O(3). After 10 yr of exposure, +CO(2) +O(3)-induced increases in belowground carbon allocation suggest that the positive effects of elevated CO(2) on belowground net primary productivity (NPP) may not be offset by negative effects of O(3). For the aspen community, fine-root biomass is actually stimulated by +O(3), and especially +CO(2) +O(3).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call