Abstract

In order to identify the viable option of tillage practices in rice-maize-cowpea cropping system that could cut down soil carbon dioxide (CO2) emission, sustain grain yield, and maintain better soil quality in tropical low land rice ecology soil respiration in terms of CO2 emission, labile carbon (C) pools, water-stable aggregate C fractions, and enzymatic activities were investigated in a sandy clay loam soil. Soil respiration is the major pathway of gaseous C efflux from terrestrial systems and acts as an important index of ecosystem functioning. The CO2-C emissions were quantified in between plants and rows throughout the year in rice-maize-cowpea cropping sequence both under conventional tillage (CT) and minimum tillage (MT) practices along with soil moisture and temperature. The CO2-C emissions, as a whole, were 24% higher in between plants than in rows, and were in the range of 23.4-78.1, 37.1-128.1, and 28.6-101.2mgm(-2)h(-1) under CT and 10.7-60.3, 17.3-99.1, and 17.2-79.1mgm(-2)h(-1) under MT in rice, maize, and cowpea, respectively. The CO2-C emission was found highest under maize (44%) followed by rice (33%) and cowpea (23%) irrespective of CT and MT practices. In CT system, the CO2-C emission increased significantly by 37.1% with respect to MT on cumulative annual basis including fallow. The CO2-C emission per unit yield was at par in rice and cowpea signifying the beneficial effect of MT in maintaining soil quality and reduction of CO2 emission. The microbial biomass C (MBC), readily mineralizable C (RMC), water-soluble C (WSC), and permanganate-oxidizable C (PMOC) were 19.4, 20.4, 39.5, and 15.1% higher under MT than CT. The C contents in soil aggregate fraction were significantly higher in MT than CT. Soil enzymatic activities like, dehydrogenase, fluorescein diacetate, and β-glucosidase were significantly higher by 13.8, 15.4, and 27.4% under MT compared to CT. The soil labile C pools, enzymatic activities, and heterotrophic microbial populations were in the order of maize > cowpea > rice, irrespective of the tillage treatments. Environmental sustainability point of view, minimum tillage practices in rice-maize-cowpea cropping system in tropical low land soil could be adopted to minimize CO2-C emission, sustain yield, and maintain soil health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call