Abstract

The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and longer-term soil microbial dynamics may be significantly different under changing climate.

Highlights

  • Understanding how climate change will affect soil carbon (C) cycling is critical for predicting future changes in the ecosystem- to global-scale C cycle [1]

  • This study examined soils originating from two different-elevation sites at the Fitzner-Eberhart Arid Lands Ecology Reserve on Rattlesnake Mountain (46.406°N, 119.611°W) located in semiarid southeastern Washington, USA

  • The plant community of the lower site is dominated by Pseudoroegneria spicata (Pursh) Á Löve and Poa secunda, while the upper site is dominated by Artemisia tripartita Rydb., P. spicata, and P. secunda [26]

Read more

Summary

Introduction

Understanding how climate change will affect soil carbon (C) cycling is critical for predicting future changes in the ecosystem- to global-scale C cycle [1]. The effects of climate change on the structure, microbial community, C storage, and respiration response of soil organic matter (SOM) remain uncertain and widely debated [2,3,4]. With respect to SOM decomposition, two broad dynamics can result in differences between the short- and longer-term respiratory responses: substrate depletion and acclimation [5]. Changes in microbial metabolic pathways or community structure might result in less-efficient decomposition regardless of substrate change [7, 8], limiting any positive feedback effect from SOM decomposition. The relative importance of these two broad mechanisms is debated [3], and global models reflect this uncertainty, exhibiting highly divergent responses to future climate change [9, 10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call